Решение системы линейных уравнений
Этот онлайн калькулятор позволит вам очень просто решить систему линейных уравнений онлайн (СЛУ онлайн) методом подстановки.
Для того чтобы решить систему линейных уравнений методом подстановки онлайн выберите количество неизвестных величин:
Заполните систему линейных уравнений
Для изменения в уравнении знаков с "+" на "-" вводите отрицательные числа. Если в вашем уравнение отсутствует какой-то коэффициент, то на его месте в калькуляторе введите ноль. Вводить можно числа или дроби. Например: 1.5 или 1/7 или -1/4 и т.д.
![]() |
x1 + x2 + x3 = |
x1 + x2 + x3 = |
|
x1 + x2 + x3 = |
|
Воспользуйтесь также:
Решение системы линейных уравнений (метод Гаусса)
Решение системы линейных уравнений (метод Крамера)
Решение системы линейных уравнений (матричный метод)
Решение системы линейных уравнений онлайн
Метод подстановки
Решение системы линейных уравнений методом подстановки осуществляется следующим образом: сперва в одном из уравнений произвольная переменная выражается через остальные. Затем данное выражение подставляется во все остальные уравнения системы. Тем самым система из n уравнений превращается в систему n-1 уравнений с n-1 неизвестными. Затем аналогичные действия повторяются до тех пор, пока мы не приходим к конечному выражению для одной из переменных системы. Получив её значения, мы через неё выражаем пошагово все остальные неизвестные.
Данный метод решения СЛАУ называется методом подстановки (мы вместо некоторой переменной подставляем её выражение через другие переменные). Метод классический и простой в понимании, но на практике для больших систем уравнений очень громоздкий и сложный в вычислениях. Поэтому на практике при решении систем уравнений с большим количеством уравнений применяют более удобные методы, наподобие метода Гаусса, в котором преобразования уже выполняются в матрице, без лишних записей.